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Abstract
A superposition mechanism for the generation of anomalous diffusion, both
subdiffusive and superdiffusive, is established. We consider a general system
model in which a probe is tossed into a stochastic bath, and is constantly
impacted by random gusts. All gusts affect the probe by a statistically common,
yet arbitrary, impact pattern representing the generic gusts–probe interaction.
Each gust has its own impact parameters—amplitude, frequency and initiation
epoch. The probe’s trajectory is the superposition of all gust impacts affecting
it. We characterize the class of impact parameter statistics which produce
anomalous diffusion probe trajectories for whatever impact patterns applied.
This class of ‘bath statistics’ generates anomalous diffusion in a universal
fashion—indifferent to the details of the gusts–probe interaction.

PACS numbers: 05.40.−a, 05.40.Fb, 02.50.−r, 05.40.Ca

For over a century diffusive motions have dominated the world of random transport processes.
Diffusive motions are characterized by a linear temporal growth of their mean square
displacements (MSDs). Namely if ξ = (ξ(t))t�0 is the trajectory of a diffusive motion, then
〈ξ(t)2〉 ≈ Dt where D is the motion’s diffusion coefficient. Statistical models of diffusion
include random walks, Brownian motion and finite-variance Lévy motions.

Recent decades have experienced growing scientific interest in so-called anomalous
diffusion random transport mechanisms [1, 2]. Anomalous diffusions are characterized by
a power-law temporal growth of their MSDs. Namely if ξ = (ξ(t))t�0 is the trajectory of
an anomalous diffusion, then 〈ξ(t)2〉 ≈ Dtα where the coefficient D and the exponent α are
positive parameters. Anomalous diffusion with exponent 0 < α < 1 disperses slower than
diffusion, and is thus termed ‘subdiffusion’. On the other hand, anomalous diffusion with
exponent α > 1 disperses faster than diffusion, and is thus termed ‘superdiffusion’. In the
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case of superdiffusion the experimentally observed values of the exponent α are typically in
the range 1 < α < 2.

Examples of subdiffusion include the transport of charge carriers in amorphous
semiconductors [3], the propagation of contaminants in groundwater [4] and the movement
of proteins in intracellular media [5, 6]. Essentially, there are two main statistical models
yielding subdiffusion: Lévy halts, and anti-persistent fractional Brownian motion (fBm). In
the first model random halts are introduced into the propagation of a ‘standard’ diffusive
transport process. The halts occur randomly (at some given rate), and their durations are
Lévy-distrusted—with fat-tailed probabilities and infinite means. These Lévy halts ‘slow
down’ the transport from diffusive to subdiffusive [7, 8]. Perhaps the best known example of
Lévy halts is the continuous time random walk (CTRW) [9] with Lévy waiting times. The
second model is fBm with Hurst exponent H in the range 0 < H < 1/2 [10]. In this Hurst
range the increments of fBm are negatively correlated—causing its fluctuations to be anti-
persistent, and the overall motion to display a subdiffusive statistical behavior (with exponent
α = 2H taking values in the range 0 < α < 1).

Examples of superdiffusion include the transport of tracers in turbulent flows [11, 12],
the search patterns of foraging animals [13] and particle trajectories in some cellular systems
[14]. As in the case of subdiffusion, there are essentially two main statistical models yielding
superdiffusion: Lévy walks, and persistent fBm. In the first model random ballistic walks
are introduced into the propagation of a ‘standard’ diffusive transport process. The walks
occur randomly (at some given rate), their velocities are random (usually +1 or −1 with equal
probabilities) and their durations are Lévy-distrusted (with fat-tailed probabilities and infinite
means). These Lévy walks ‘speed up’ the transport from diffusive to superdiffusive [15]. The
second model is fBm with Hurst exponent H in the range 1/2 < H < 1 [10]. In this Hurst
range the increments of fBm are positively correlated—causing its fluctuations to be persistent,
and the overall motion to display a superdiffusive statistical behavior (with exponent α = 2H

taking values in the range 1 < α < 2).
Brownian motion—the quintessential example of diffusion—is a macroscopic

manifestation of a microscopic phenomenon. Indeed, as observed by Sir Robert Brown,
the jagged and erratic trajectory of a pollen particle suspended in liquid is caused by
the ‘bombardment effect’ of trillions of molecules hitting the particle at random. As a
general conceptual model of such a random motion, consider the trajectory of a probe tossed
into a turbulent stochastic ‘bath’. The probe is constantly impacted by random ‘gusts’—
these impacts generating the probe’s random trajectory Y = (Y (t))t�0. A fairly general
mathematical model for the random trajectory Y is the following impact superposition model:

Y (t) =
∑
τk�t

akXk(ωk(t − τk)), (1)

where Xk = (Xk(t))t�0 is the random pattern by which gust k affects the probe, and (ak, ωk, τk)

are the random ‘impact parameters’ of gust k—amplitude ak (real valued), frequency ωk

(positive valued) and initiation epoch τk (non-negative valued). We henceforth assume that
the random patterns {Xk} are independent and identically distributed (i.i.d.) copies of a generic
random ‘impact pattern’ X = (X(t))t�0, which describes the effect of a single arbitrary gust
on the probe’s trajectory.

In the special case the impact pattern X follows an exponential decay (i.e. X(t) =
exp(−t))—or, more generally, when the impact pattern X is a deterministic function decaying
to zero (as t → ∞)—then the resulting random trajectory Y is a shot noise process [16].
The probe can also represent a single molecule embedded in solid and performing a spectral
diffusion [17]—in which case the random trajectory Y represents the probe’s fluctuating

2



J. Phys. A: Math. Theor. 42 (2009) 472003 Fast Track Communication

energy levels. In the context of signal processes, the superposition model of equation (1) can
be interpreted as an aggregative communication model: the random trajectory Y representing
the superimposed output signal of a communication channel ‘fed’ by the random input signals
{Xk}—signal k transmitted with amplitude ak, frequency ωk and initiation epoch τk .

Ubiquitously observed physical phenomena—such as diffusion and anomalous
diffusion—often stem from universal mechanisms, namely mechanisms that generate
the phenomena under consideration in a ‘universal fashion’ which is indifferent to the
particularities of the underlying details. For example, in the case of Brown’s experiment,
the observed Brownian motion is independent of the physical and chemical details of the
pollen particles and the liquid used—any other particles (that can be suspended in liquid)
and any other liquid would yield Brownian motion as well (albeit with a different diffusion
coefficient D).

In the superposition model of equation (1) the gusts–probe interaction is represented by
the impact pattern X. A universal behavior of the MSD of the probe’s trajectory Y needs to
be indifferent to the details of the impact pattern X. Hence, universality should stem from the
statistics of the stochastic bath—conveyed by the statistics of the random impact parameters.
In what follows we seek statistics of the impact parameters that render the variance of the
probe’s trajectory Y independent of the choice of the impact pattern X. To that end let us first
describe the statistics of the impact parameters.

The set of impact parameters P = {(ak, ωk, τk)}k forms a collection of points scattered
arbitrarily on the three-dimensional domain D = (−∞,∞)× (0,∞)× [0,∞). The common
statistical method for the random scattering of points in general domains is that of Poisson
point processes [18], and we henceforth consider the impact parametersP to be a Poisson point
process with intensity λ(a, ω, τ). The Poissonian intensity λ(a, ω, τ) governs the statistics
of the impact parameters P [18]: (i) the number of gusts with impact parameters residing in a
sub-domain D (of the domain D) is Poisson distributed with mean

∫∫∫
D

λ(a, ω, τ) da dω dτ ;
(ii) the number of gusts with impact parameters residing in disjoint sub-domains (of the
domain D) is independent random variables4.

Poisson point processes have a wide spectrum of applications ranging from insurance and
finance [19] to queueing systems [20]. In recent years we applied Poissonian statistics to study
various aspects of stochastic fractality. Examples include fractality of random populations
[21–23]; statistical resilience of random populations to the action of random perturbations
[24]; universal generation of Lévy laws and 1/f noises [25]; universal generation of statistical
self-similarity [26].

In what follows we set

ψ(x, y) =
∫ ∞

−∞
a2λ(a, x, y) da (2)

(x > 0; y � 0). The function ψ(x, y) is about to play a key role in what follows, and is
henceforth termed the ‘key function’. Note that if λ(a, ω, τ) = �(a/ψ∗(ω, τ))/ψ∗(ω, τ)2—
where �(u) (u real) is an arbitrary non-negative valued function with a unit-valued second
moment (i.e.

∫ ∞
−∞ u2�(u)du = 1)—then ψ(x, y) = ψ∗(x, y). Hence, any desired key

function ψ(x, y) can be obtained from a wide class of underlying Poissonian intensities
λ(a, ω, τ).

Analysis of the superposition model of equation (1) establishes an explicit transformation
mapping the MSD MX(t) = 〈X(t)2〉 of the impact pattern X to the variance VY (t) =
4 Somewhat informally, the meaning of the Poissonian intensity λ(a, ω, τ) is as follows: a gust with impact
parameters belonging to the infinitesimal box (a, a + da) × (ω, ω + dω) × (τ, τ + dτ) exists with probability
λ(a, ω, τ) da dω dτ .
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〈Y (t)2〉 − 〈Y (t)〉2 of the probe’s trajectory Y. Indeed, using probabilistic conditioning,
combined with results from the theory of Poisson processes ([18], equations (3.9)– (3.10)),
yields the following connection between the aforementioned MSD and variance:

VY (t) =
∫ ∞

0

∫ 1

0
MX(x(1 − y))ψ

(x

t
, ty

)
dx dy. (3)

We term the Poissonian statistics of the impact parameters P ‘variance-universal’ if the
variance VY (t) of the probe’s trajectory Y is independent—up to a scale factor—of the impact
pattern X. Namely the impact parameters’ Poissonian statistics are variance-universal if the
variance of the probe’s trajectory admits the form VY (t) = cX · v(t) where cX is a constant
depending on the impact pattern X, and where v(t) is a temporal function which is independent
of the impact pattern X. Equation (3), in turn, implies that the impact parameters’ Poissonian
statistics are variance-universal if and only if the key function ψ(x, y) satisfies the scaling
relation

ψ
(x

t
, ty

)
= tαψ(x, y) (4)

(x > 0; y � 0; t > 0), where α is an arbitrary positive exponent. Moreover, if the scaling
relation of equation (4) holds, then the probe’s trajectory Y is an anomalous diffusion with
exponent α:

VY (t) = VY (1) · tα (5)

(in other words, cX = VY (1) and v(t) = tα). In order that the variance-universal Poissonian
statistics be admissible the key function ψ(x, y) needs to satisfy the integrability condition
VY (1) < ∞.

Variance-universal Poissonian statistics form a universal mechanism for the generation of
anomalous diffusion: no matter what impact pattern X represents the gusts–probe interaction,
the probe’s trajectory Y can be set to display a specific anomalous diffusion behavior—with
desired exponent α—by applying a proper Poissonian statistics of the impact parameters P .
The ‘universality’ here is in the sense that the probe’s variance VY (t) is independent—up to the
scale factor cX = VY (1)—of the choice of the impact pattern X. Interpreting the superposition
model of equation (1) as a signal superposition model, we obtain that variance-universal
Poissonian statistics yield anomalous diffusion output signals (Y) for whatever statistical
pattern (X) of the input signals ‘fed’ into the communication channel.

We emphasize that the anomalous diffusion statistics of equation (5) emerged naturally—
rather than were a goal we aimed at attaining. Indeed, what we sought were variance-universal
Poissonian statistics—and we had no a priori information or prerequisites regarding the form
of the temporal function v(t). It so turned out that the only functional form the temporal
function v(t) can admit—having applied variance-universal Poissonian statistics—is that of
a power-law. In turn, the power-law functional form v(t) = tα is the hallmark of anomalous
diffusion.

Two related works are [25] and [26]. In [25] a superposition model analogous to
equation (1)—yielding stationary trajectories Y—was considered. The Poissonian statistics of
the impact parameters was termed: (i) ‘amplitude-universal’ if the stationary distribution of
the trajectory Y is independent—up to a scale factor—of the impact pattern X; (ii) ‘temporal-
universal’ if the power spectrum of the trajectory Y is independent—up to a scale factor—of
the impact pattern X. The classes of amplitude-universal and temporal-universal Poissonian
statistics were characterized, and their corresponding stationary laws and power spectra were
shown to coincide, respectively, with the classes of Lévy laws and 1/f noises—thus providing
a universal explanation to the ubiquity of these ‘fractal statistics’ (in the context of stationary
processes).
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In [26] the superposition model of equation (1) was considered, and statistical self-
similarity [27] was sought: Poissonian statistics of the impact parameters that render the
trajectory Y statistically self-similar—the self-similarity being independent of the choice of
the impact pattern X. Finite-variance statistically self-similar random trajectories display both
1/f noise behavior, and anomalous diffusion behavior. Hence, the mechanism introduced in
[26]—in the case of finite variance trajectories—further produces anomalous diffusion. Yet, it
produces anomalous diffusion via statistical self-similarity—and is thus much more restrictive
than the mechanism presented in this communication. Indeed, the class of ‘variance-universal’
Poissonian statistics is far larger than the class of Poissonian statistics yielding statistical self-
similarity.

The 1/f noises obtained in [25] via the notion of ‘temporal universality’ yield power
spectra of the form 1/|f |β , with exponent β taking values in the range 0 < β < 1. On the
other hand, the 1/f noises obtained in [26] via statistical self-similarity yield power spectra
of the form 1/|f |β , with exponent β taking values in the range β > 1. These two 1/f noise
ranges are the ‘spectral analogs’ of the two anomalous diffusion ranges (0 < α < 1 and
α > 1). Establishing a general 1/f noise theory which is parallel to the anomalous diffusion
theory presented in this communication—i.e. a 1/f noise theory based on the superposition
model of equation (1), and spanning both exponent ranges 0 < β < 1 and β > 1—is a goal
set for further research.

A fairly general class of key functions ψ(x, y) satisfying the scaling relation of
equation (4) is given by

ψ(x, y) = φ(xy)yα (6)

(x > 0; y � 0), where φ(u) (u � 0) is an arbitrary non-negative valued function for which the
integrability condition VY (1) < ∞ holds. Examples of the generation of anomalous diffusion
via the key function of equation (6) are presented in table 1. Examples 1–4 demonstrate
how anomalous diffusion can emerge from the superposition of mundanely ‘regular’ impact
patterns: (1) stationary patterns; (2) diffusion patterns (random walks, Brownian motion,
finite-variance Lévy motions); (3) geometric patterns (multiplicative random walks, geometric
Brownian motion, geometric Lévy motions); (4) Ornstein–Uhlenbeck patterns (generated by
Langevin dynamics [28])5. Example (5) considers anomalous diffusion impact patterns, and
generalizes examples (1) and (2) (corresponding, respectively, to the special cases β = 0 and
β = 1).

Two special scenarios of the superposition model of equation (1) are the ‘big bang
scenario’ and the ‘steady state scenario’. In the big bang scenario all gusts initiate at time 0
(i.e. τk ≡ 0), and hence the Poissonian intensity is given by λ(a, ω, τ) = λ̃(a, ω)δ(τ ) (δ(·)
denoting the Dirac ‘delta function’). In the steady state scenario gusts with amplitude a and
frequency ω initiate—randomly in time—at rate λ̃(a, ω), and hence the Poissonian intensity
is given by λ(a, ω, τ) = λ̃(a, ω). For both these scenarios we set

ψ̃(ω) =
∫ ∞

−∞
a2λ̃(a, ω) da (7)

(ω > 0). The function ψ̃(ω) will now assume the role of the key function ψ(x, y). As in
the case of the key function ψ(x, y), note that if λ̃(a, ω) = �(a/ψ̃∗(ω))/ψ̃∗(ω)2—where
�(u) (u real) is an arbitrary non-negative valued function with a unit-valued second moment
(i.e.

∫ ∞
−∞ u2�(u)du = 1)—then ψ̃(ω) = ψ̃∗(ω). Hence, any desired function ψ̃(ω) can be

obtained from a wide class of underlying Poissonian intensities λ̃(a, ω).

5 Note that in this example the impact patterns’ short-term behavior is diffusive (MX(t) ≈ cκt for t 	 1), whereas
the long-term behavior is stationary (MX(t) ≈ c for t 
 1).
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Table 1. Generating anomalous diffusion via the key function of equation (6). The first and
second columns specify, respectively, the stochastic dynamics and the MSD of the impact pattern
X considered (the coefficient c, and the exponents κ and β, are arbitrary positive parameters).
The third column specifies the finite-moment condition the function φ(u) needs to satisfy so as to
assure that the integrability condition VY (1) < ∞ holds. The fourth column specifies the range of
admissible exponents α.

Dynamics MSD MX(t) = ∫ ∞
0 umφ(u) du < ∞ Exponent

1. Stationary c m = 0 α > 0
2. Diffusion ct m = 1 α > 1
3. Geometric c exp(−κt) m = 0 α > 0
4. Langevin c(1 − exp(−κt)) m = 0 α > 0
5. Anomalous diffusion ctβ m = β α > β

The counterparts of equation (3) are (i) big bang scenario:

VY (t) = 1

t

∫ ∞

0
MX(x)ψ̃

(x

t

)
dx (8)

(t > 0); (ii) steady state scenario:

VY (t) =
∫ ∞

0

(
1

x

∫ x

0
MX(y)dy

)
ψ̃

(x

t

)
dx (9)

(t > 0).
Equations (8) and (9) imply that in both the big bang scenario and the steady state

scenario the Poissonian statistics are variance-universal if and only if the function ψ̃(ω)

is homogeneous—in which case the probe’s trajectory Y is an anomalous diffusion. More
precisely, (i) in the big bang scenario the probe’s trajectory is an anomalous diffusion with
exponent α if and only if the function ψ̃(ω) is homogeneous of order −α − 1, and the
integrability condition

∫ ∞
0 MX(u)u−α−1du < ∞ is satisfied; (ii) in the steady state scenario

the probe’s trajectory is an anomalous diffusion with exponent α if and only if the function
ψ̃(ω) is homogeneous of order −α, and the integrability condition

∫ ∞
0 MX(u)u−αdu < ∞ is

satisfied.
In both the big bang scenario and the steady state scenario the following examples of

table 1 are non-admissible impact patterns: stationary patterns (example 1); diffusion patterns
(example 2); anomalous diffusion patterns (example 5). Geometric patterns (example 3) are
admissible impact patterns in the big bang scenario alone—yielding subdiffusive trajectories
(0 < α < 1). Ornstein–Uhlenbeck patterns (example 4) are admissible impact patterns in
both scenarios—yielding subdiffusive trajectories (0 < α < 1) in the big bang scenario, and
yielding superdiffusive trajectories (with exponent 1 < α < 2) in the steady state scenario.

In this communication we considered the superposition model of equation (1), which
describes the random motion of a probe tossed into a stochastic bath. The probe’s trajectory
Y is the superposition of the effects of all gusts impacting it. The gusts are i.i.d. and share
a statistically common impact pattern X representing the gusts–probe interaction, and each
gust has its own impact parameters—amplitude, frequency and initiation epoch. Our aim
was to characterize the stochastic-bath statistics—conveyed by the Poissonian statistics of the
impact parameters P—which are variance-universal: rendering the variance of the trajectory
Y independent, up to a scale factor, of the impact pattern X.

Analysis showed that the variance-universal Poissonian statistics are characterized by the
scaling relation of equation (4), and that the only possible corresponding probe trajectories are
anomalous diffusions. Namely given a desired exponent α—appropriate variance-universal
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Poissonian statistics will render the probe’s trajectory Y an anomalous diffusion with exponent
α, for whatever impact pattern X. We have thus established a novel universal mechanism for the
generation of anomalous diffusion, which is fundamentally different of the commonly applied
Lévy and fBm anomalous diffusion models: Lévy halts and anti-persistent fBm generating
subdiffusion, and Lévy walks and persistent fBm generating superdiffusion.
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